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Abstract 

 

In the aluminium smelting process, the information on spatial variations in alumina concentration 

is crucial for online alumina feeding control. However, the harsh environment of smelting cells 

renders long-term continuous real-time measurement of alumina concentrations impractical. 

Model-based state observers can be utilised for real-time estimation of the spatially distributed 

alumina concentrations, but the challenge lies in addressing model uncertainties, such as those in 

bath flow velocities and anode-cathode distance. To address these challenges, an H∞ filter-based 

multilevel state observer is proposed for estimating spatial alumina concentration. This method 

can estimate alumina concentrations within a reasonable range and is robust to uncertainties. The 

effectiveness of this method is validated through experimental studies. 

 

Keywords: Aluminium electrolysis, Process monitoring, State observer. 

 

1. Introduction 

 

In the aluminium smelting process, the control of alumina concentration plays an important role 

in improving the process efficiency. Inappropriate control can lead to various abnormal 

conditions, such as anode effects or sludge formation [1-6]. The existing alumina feed control 

algorithm employs a kind of logic control, which includes different feed windows [7]. To improve 

the control accuracy of alumina concentrations, reliable information of alumina concentration 

under different cell conditions is required. Traditional methods for getting alumina concentration 

information rely on periodic sampling and laboratory analysis, which can be time-consuming [2]. 

Therefore, online monitoring is necessary to improve the control of alumina concentrations.  

 

The commonly used method for process monitoring is the extended Kalman filter (EKF), and 

many researchers have applied it in the aluminium smelting process. Shi [7,8] used the EKF to 

estimate average alumina concentration and utilised the results for control investigations. 

Yao [10] applied the EKF to investigate average alumina concentration and corresponding 

dissolution rate. However, since the EKF is designed to minimise the mean-squared error under 

the assumption of Gaussian noise, it may provide inaccurate estimations when abnormal cell 

conditions, such as anode effect, occur due to increased noise uncertainty. In contrast, the H∞ filter 

can minimise the estimation error in the worst-case scenario [11]. Rao [12] compared the Kalman 

filter and H∞ filter, and the results showed that the H∞ filter can have a better estimation 

performance under worst-case noise conditions. Poveda [13] also conducted a comparison and 

concluded that H∞ filter converges faster than the Kalman filter under additive noise. Therefore, 
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in the aluminium smelting process, H∞ filter is more robust for the estimation of alumina 

concentration. 

 

On the other hand, online estimation struggles with variability of alumina distribution due to 

limitations in spatial information. Based on the aluminium electrolysis mechanism, the localised 

consumption of alumina is related to the individual anode currents. With spatial information from 

individual anode current measurements, the distribution of alumina concentrations can be 

estimated [14]. Additionally, the localised alumina concentrations are also affected by the bath 

flow patterns, which are difficult to obtain and introduce additional uncertainties into the process 

system [15]. To address these challenges, an H∞ filter based multilevel state observer utilising 

individual anode current measurements is proposed for online estimation of the spatial alumina 

concentration. By using the data provided by individual anode currents, this method can enhance 

the spatial resolution and accuracy of spatial alumina concentration estimations. 

 

In this paper, the structure is organised as follows: the process model is first introduced. Then, 

the design of an H∞ filter is described. Following that, the structure of multilevel state observer is 

introduced. Finally, the effectiveness of this method is validated through experimental studies. 

 

2. Process Modelling of Aluminium Smelting Process 

 

The Hall-Héroult process is the commonly applied method for producing alumina in industry. In 

this process, the dumped alumina dissolves into the molten cryolite and is electrolysed into 

aluminium. The overall reaction in the aluminium smelting process can be simply represented as 

follows: 

 2Al2O3 + 3C → 4Al(l) + 3CO2(g) (1) 

 

Al2O3 + 3C → 2Al(l) + 3CO(g)                                                   (2) 

 

where the ratio of CO2:CO in the product is typically in the range between 5 and 10 [12].  

 
Figure 1. Layout of the anodes. 

 

For an aluminium cell with 20 anodes and 4 alumina feeders, as shown in Figure 1, for a 1-minute 

time step, the dynamics of alumina concentration can be described by the following process 

model [15]: 

 𝐶𝐴𝑙2𝑂3,𝑠𝑙𝑜𝑤,𝑘+1 = 𝐶𝐴𝑙2𝑂3,𝑠𝑙𝑜𝑤,𝑘 + 𝑡𝑠 (−𝑘𝑠𝑙𝑜𝑤𝐶𝐴𝑙2𝑂3,𝑠𝑙𝑜𝑤,𝑘 +
𝑃𝐴𝑙2𝑂3𝑚𝑓𝑒𝑒𝑑,𝑘(1−𝑟)

𝑚𝑏𝑎𝑡ℎ
 ) (3)

 𝐶𝐴𝑙2𝑂3,𝑑,𝑘+1 = 𝐶𝐴𝑙2𝑂3,𝑑,𝑘 + 𝑡𝑠 (
𝑃𝐴𝑙2𝑂3𝑚𝑓𝑒𝑒𝑑,𝑘

𝑚𝑏𝑎𝑡ℎ
𝑟 + 𝑘𝑠𝑙𝑜𝑤𝐶𝐴𝑙2𝑂3,𝑠𝑙𝑜𝑤,𝑘 −

𝐹𝑎(𝐼𝑘)

𝑚𝑏𝑎𝑡ℎ
)  (4) 

 𝐴𝐶𝐷𝑘+1 = 𝐴𝐶𝐷𝑘 + 𝑡𝑠(−𝛿𝑚𝑒𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑚 + 𝛿𝑎𝑛𝑜𝑑𝑒 𝑐𝑜𝑛𝑠𝑢𝑚) + 𝑏𝑚,𝑘   (5) 

 

where: 
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